OSHA
guidebook for labs
SECOND EDITION
Contents

Introduction ... v
Acronyms and abbreviations .. vi
Access to records (1904, 1910, 1020, 1913.10, and others) 1
Air contaminants (1910.1000) .. 5
Asbestos (1910.1001 for general industry and 1926.1101 for construction) 11
Bloodborne pathogens (1910.1030) 45
Compressed gases (1910.169) ... 67
Confined spaces (1910.146) ... 73
Construction/renovation (1926) .. 87
Electrical safety (1910, subpart S) 101
Emergency plans (1910.38) ... 105
Emergency response/HAZWOPER (1910.120) 107
Employee health services .. 115
Ergonomics (voluntary guideline) 125
Ethylene oxide (1910.1047) .. 131
Exiting (1910.36) .. 149
Eye/face protection (1910.133 and various standards) 151
Eyewash/emergency shower (1910.151) 153
Fire prevention and protection (1910.155 to 1910.165) 155
Formaldehyde (1910.1048) .. 169
General duty clause ... 189
Glutaraldehyde ... 191
Hazard communication standard (29 CFR 1910.1200) 195
Hearing/noise exposure (1910.95) 209
Laboratory standards (1910.1450) 219
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasers (guidance)</td>
<td>237</td>
</tr>
<tr>
<td>Laundry/housekeeping</td>
<td>251</td>
</tr>
<tr>
<td>Lead (1926.62 [construction work] and 1910.1025 [general industry])</td>
<td>263</td>
</tr>
<tr>
<td>Lockout/tagout (1910.147)</td>
<td>277</td>
</tr>
<tr>
<td>Machine guarding (1910.212)</td>
<td>287</td>
</tr>
<tr>
<td>Medical first aid (1910.151)</td>
<td>289</td>
</tr>
<tr>
<td>Mercury</td>
<td>291</td>
</tr>
<tr>
<td>Personal protective equipment (1910.132)</td>
<td>295</td>
</tr>
<tr>
<td>Radiation (1910.1096 [ionizing] and 1910.97 [non-ionizing])</td>
<td>303</td>
</tr>
<tr>
<td>Recordkeeping (1904)</td>
<td>315</td>
</tr>
<tr>
<td>Respiratory protection (1910.134)</td>
<td>335</td>
</tr>
<tr>
<td>Welding (1910.254 and 252)</td>
<td>357</td>
</tr>
<tr>
<td>Workplace violence (voluntary guideline)</td>
<td>359</td>
</tr>
<tr>
<td>Xylene</td>
<td>365</td>
</tr>
<tr>
<td>Appendix A: State occupational safety health plans</td>
<td>373</td>
</tr>
<tr>
<td>Appendix B: OSHA standards training frequency</td>
<td>385</td>
</tr>
</tbody>
</table>
This reference guide reviews the top Occupational Safety and Health Administration (OSHA) standards with which laboratory safety managers regularly deal. Although no chapter is intended to be a substitute for an entire standard, this book outlines the major points of the laboratory-related regulations in an easy-to-read format. You will be able to navigate through the requirements quickly and confidently.

We’ve packed a lot of vital information into this guide. But, knowing how busy you are, we have kept it manageable and practical. All topics are organized alphabetically, and each page is marked with a shaded tab, enabling you to flip quickly through the guide to find the information you need. Also, commonly used acronyms and abbreviations are listed at the start of the guide for handy reference.

It is our job to review the information and condense it into an understandable guide so that you can have everything related to OSHA and laboratories in one place. We hope you find it indispensable.
Acronyms and abbreviations

ACGIH: American Conference of Governmental Industrial Hygienists
ACIP: Advisory Committee on Immunization Practices
ACM: asbestos-containing materials
ANSI: American National Standards Institute
ASME: American Society of Mechanical Engineers
BLS: Bureau of Labor Statistics
BSI: body substance isolation
CAT: computerized axial tomography
CERCLA: Comprehensive Environmental Response, Compensation, and Liability Act
CGA: Compressed Gas Association
CDC: Centers for Disease Control and Prevention
CHO: chemical hygiene officer
CHP: chemical hygiene plan
CPR: cardiopulmonary resuscitation
dBA: decibels on the A scale
DOT: Department of Transportation
EAP: employee assistance program
EC: environment of care
EHS: employee health service
EMS: emergency medical service
EPA: Environmental Protection Agency
EPCRA: Emergency Planning and Community Right-to-Know Act
ESLI: end-of-service-life indicator
EtO: ethylene oxide
FDA: Food and Drug Administration
FPM: feet per minute
HAZWOPER: Hazardous Waste Operations and Emergency Response
HBV: hepatitis B virus
HEPA: high-efficiency particulate air
HICPAC: Hospital Infection Control Practices Advisory Committee
HIV: human immunodeficiency virus
Hz: hertz
IARC: International Agency for Research on Cancer
IDLH: immediately dangerous to life or health
JCAHO: Joint Commission on Accreditation of Healthcare Organizations
LEPC: local emergency planning committee
LSC: Life Safety Code®
LSO: laser safety officer
MPE: maximum permissible exposure
MSD: musculoskeletal disorder
MSDS: material safety data sheets
NFPA: National Fire Protection Association
NHZ: nominal hazard zone
NIOSH: National Institute for Occupational Safety and Health
NM: nanometer
NRC: Nuclear Regulatory Commission
NTP: National Toxicology Program
OPIM: other potentially infectious material
OSHA: Occupational Safety and Health Administration
PACM: presumed asbestos-containing materials
PAPR: powered air-purifying respirator
PEL: permissible exposure limit
PPE: personal protective equipment
PPM: parts per million
PSI: pounds per square inch
QLFT: qualitative fit test
Acronyms and abbreviations

QNFT: quantitative fit test

RCRA: Resource Conservation and Recovery Act

SARA: Superfund Amendments Reauthorization Act

SCBA: self-contained breathing apparatus

SOP: standard operating procedure

STEL: short-term exposure limit

STS: standard threshold shift

TB: tuberculosis

TLV: threshold limit value

TSD: treatment, storage, and disposal (facility)

TSI: thermal systems insulation

TWA: time-weighted average

UP: universal precautions
Under 29 CFR 1910.1020, requirements apply to the maintenance and retention of records for medical surveillance, exposure monitoring, inspections, and other activities and incidents relevant to occupational safety and health.

Individual health records must be kept in the employee health-service department. OSHA defines an employee medical record as one that concerns the health status of an employee and is made or maintained by a physician, registered nurse, or other healthcare professional or technician. Each employee health record must be maintained for the duration of employment plus 30 years, unless a specific occupational safety and health standard requires a different period of time. Laboratory reports and worksheets need to be kept for only one year.

Employers are required to maintain accurate records of certain potentially toxic or harmful physical agents that must be monitored or measured. Employers must promptly advise employees of any excessive exposure and the corrective action taken. In certain cases, physical examinations and testing are required. OSHA requires that the employee exposure records be maintained for the duration of employment plus 30 years. Employees or their designated representatives have a right to review their individual employee medical records and records that describe employee exposures.

When employees request their exposure records, the employer is required to furnish them within 15 days. Employee representatives also may examine and copy a worker’s exposure records. If prescribed procedures are followed, OSHA has the right to see exposure records.
Confidentiality

Employee health records must be treated with the level of confidentiality necessary to protect employee privacy. The employer must make the records available to the employee—or authorized representative—if requested by the employee. Employees or their representatives have the right to examine and copy the results of exposure monitoring.

The employee exposure record must also contain the following:

- Environmental monitoring, specific sampling results, the collection methodology, a description of the analytical and mathematical methods used, and a summary of other background data relevant to interpretation of the results obtained

- Biological monitoring results that directly assess the absorption of a hazard

- MSDSs or a hazard inventory that describes chemicals and identifies where and when they are used

Exemptions

The following types of records are exempt from the retention rule:

- Health-insurance claims maintained separately from the employer’s medical program and its records

- First-aid records of one-time treatment and subsequent observation

- Medical records of employees who have worked for less than one year for the employer need not be retained beyond the term of employment if they are provided to the employee upon termination
• Records that concern voluntary EAPs (alcohol, drug abuse, or personal counseling), if maintained separately from the employer’s medical program and its records

Additional requirements

The records-access standard also includes the following provisions:

• The storage of information in any form—document, microfilm, x-ray, or automated data processing—is permitted, but chest x-rays must be kept in their original state

• Employer trade secrets should conform with OSHA’s hazard-communication standard

• Employee representatives (such as union representatives) must show an occupational health need for requested records when seeking access to employee exposure records without consent

Similar provisions apply to employees’ medical records. However, for privacy interests, employee representatives are allowed access to the records only with written consent of the employee concerned. The records-access rule requires that employees be informed upon employment, and annually thereafter, of their rights of access to the records and the correct procedures for exercising those rights.
Laboratory employees may be exposed at times to a variety of harmful materials in the air, including gases, dusts, mists, vapors, fumes, and other substances.

OSHA issued the air-contaminants standard to require employers to monitor employee exposure to potentially harmful chemicals and other airborne substances, and to keep such exposures within permissible limits. Employers that fail to comply with the air-contaminants standard could be subject to enforcement action.

Employers also are required to provide hazard information and training to employees who may be exposed to chemicals covered under the air-contaminants standard.

Regulated substances

Chemical substances used in healthcare facilities and regulated under the air-contaminants standard include

- mercury
- methyl methacrylate
- methanol
- xylene
- ammonia
- chlorine
- chlorofluorocarbons or Freon™
To comply with the air-contaminants standard, employers should take an inventory of each worksite to determine whether hazardous air contaminants are present, the levels of such contaminants, and how they can be controlled or mitigated as required.

Permissible exposure limits (PEL)

The air-contaminants standard specifies PELs for hundreds of potentially hazardous chemicals and other substances. PELs are based on three different increments of time:

- An eight-hour measurement taken to determine the TWA
- A 15-minute measurement for a STEL
- An instantaneous measurement for the ceiling limit

Many PELs have not been updated in years and are considered by some safety experts to be too permissive to adequately protect workers. Some experts advise employers to reduce the likelihood of endangering workers and being cited for a safety violation by using exposure limits adopted by OSHA for the purpose of updating the standard in 1989. Alternatively, employers may wish to follow current recommendations of the ACGIH or NIOSH.

Monitoring methods

Tools commonly used to obtain required measurements include

- personal dosimeters/monitoring badges
- detector tubes
- industrial hygiene methods, such as vacuum pumps and a variety of filter media

More sophisticated means include use of portable gas chromatographs and infrared spectrophotometers.
Recordkeeping requirements

All air-monitoring data must be recorded and retained by the employer for a minimum of 30 years. These records also must be made available to employees in accordance with OSHA requirements.

Required exposure controls

Employers are required to enable administrative or engineering controls to bring employee exposure levels within permissible limits. Only in cases where such controls are not feasible may PPE and other measures be used to meet the PELs.

All control measures must be approved for that specific use by a competent industrial hygienist or other technically qualified person.

Hierarchy of controls

Industrial hygienists commonly follow a system known as the “hierarchy of controls” to ensure that the most consistent means of controlling a hazard is used wherever possible. The system ranks controls in descending order of consistency and overall effectiveness. An example of this approach would be installation of local-exhaust ventilation to remove glutaraldehyde fumes from a medical sterilization area, rather than simply requiring employees to wear respirators when working there.

The air-contaminants standard requires employers to institute the hierarchy of controls to a certain extent, as engineering and administrative controls must be used wherever possible before work-practice and other controls may be relied upon to meet the PELs. However, the regulation in some cases allows employers to rely upon employee rotation—an administrative control—to limit exposures to hazardous substances. This method is rejected by many safety experts as inconsistent with the goal of reducing hazardous exposures for the greatest number of employees.
Control methods

Employee exposure to air contaminants can be prevented or reduced through various control methods:

- Elimination of the hazard (e.g., by contracting with an outside firm that provides services such as medical-instrument sterilization).

- Substitution of less-toxic materials.

- Change of a process.
 - Isolation (e.g., placing the hazardous process in a separate room or in a corner of the building to reduce the number of persons exposed).
 - Engineering controls are used to control a hazard at the source. Primary examples include local-exhaust ventilation, general dilution ventilation, and closed systems.

- Administrative controls (e.g., limiting the total amount of time an individual is exposed to a health hazard, or rotating two or more workers each day).

- Training and information—Employees should be told what hazards they are exposed to and the safe-work practices they should use to reduce or limit exposure.

- Personal hygiene—Employees who are exposed to hazardous substances should wash their hands before eating, smoking, or using toilet facilities. Skin exposed to chemicals such as alkalies, acids, solvents, and strong cleaning agents should be washed immediately. Employees should not be permitted to eat around toxic chemicals or in contaminated areas. Clothing should be changed and washed daily if it becomes contaminated with toxic chemicals, dusts, fumes, or liquids.

- PPE—Items such as respirators, protective clothing, and protective equipment must be made available. The items should be provided and maintained in compliance with OSHA requirements for PPE.
Identifying hazardous substances

Often, health hazards associated with air contaminants are not recognized because materials used in them are identified only by trade names. A further complication arises from the fact that materials tend to contain mixtures of substances, which makes identification difficult. To identify occupational health hazards in a particular workplace, a materials analysis should be conducted at each operation to show all chemicals used and all products and byproducts formed. All hazardous substances should then be listed and evaluated. The most likely mode of exposure should be noted (e.g., ingestion, skin absorption, or inhalation). Most of this information is available on the MSDS that is supplied with the product upon purchase or delivery.

After this analysis is completed, related activities such as maintenance and service operations should be examined for health-hazard potential. Control measures should be activated where necessary to keep exposure within permissible or recommended limits.